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1. 

A new method is presented that retains all the advantages of the more elaborate existing
Rayleigh-Ritz methods such as the revised approach presented by Jen et al. [1], but with
two additional important advantages.

The first advantage is related to simplicity of order reduction by using standard
‘‘assembling’’ techniques similar to those used in FEM. Thus, assembling and order
reduction is simpler and numerically more efficient than singular value decomposition. This
results from the use of Boolean instead of full real matrices and shows up as improved
precision in large complex structures. The second advantage is related to computational
cost. The Rayleigh–Ritz type methods lead to full matrices K and M to be diagonalized.
The method presented yields sparse matrices that can be solved at much lower cost by
sparse matrix techniques developed for FEM. The characteristic feature of this approach
is to work in physical instead of generalized co-ordinates. The general steps of the
procedure will be developed and commented upon in section 2. The main features are
described below.

(1) Decomposition of the whole structure in simple structural components and adoption
of suitable models for each component (set of shape functions) from a library. The stiffness
and mass matrices in generalized co-ordinates can then be determined in a systematic
manner.

(2) Transformation of stiffness and mass matrices from generalized to physical
co-ordinates and enforcement of geometric boundary conditions, both internal and
external, by using an ‘‘assembling’’ technique similar to FEM. This procedure will ensure
admissibility of the remaining independent global shape functions.

(3) Solution of the eigenvalue problem for the stiffness and mass matrices of the whole
structure obtained in the previous step by sparse matrix techniques.

(4) Back transformation from physical to generalized co-ordinates. This procedure can
be done independently for each substructure and results consequently in low
computational costs.

The method has been validated by case studies. The results show an excellent agreement
with the corresponding exact theoretical solutions when available and, in other cases, with
the results of alternative methods.

2.    

2.1. The Rayleigh–Ritz Method
For a continuum system, an exact analytical solution is not always possible and an

approximate solution via some kind of structural discretization is undertaken. In the
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Rayleigh–Ritz method, one assumes a finite series solution of a trial displacement field
(shape functions) [2–5],

u� (x, y, z)= s
N

j=1

8� j (x, y, z)pj . (1)

For a continuum, the kinetic energy may be expressed by the following integral, which
may be a volume, a surface or a line integral depending upon the configuration of the
structure and the space co-ordinate system used:

T= 1
2 g ru̇2 dV, (2)

where r is the mass density. From equation (1), the displacement ū can be differentiated
to obtain velocities and substituting into equation (2) yields

T= 1
2 s

N

j=1

s
N

k=1

ṗjṗk g r8� j8� k dV. (3)

The mass matrix is derived from the kinetic energy terms in equation (3). The generalized
mass matrix component is recognized to have the form

mjk =g r8� j8� k dV. (4)

The stiffness matrix is derived from the strain energy term in equation (5). For a
continuum, the strain energy may be expressed by the integral

U= 1
2 g {ṫ}T{e} dV, (5)

where {t} is the stress vector containing the six components of stress at a point and {e}
is the strain vector of six components of strain at a point. For elastic materials (obeying
Hooke’s law) the linear relationship between stress and strain may be written as

{t}=[G]{e}, (6)

where [G] is a square symmetric matrix of coefficients that are dependent upon the elastic
properties of the material. Replacing equation (6) in equation (5), the strain energy has
the form

U= 1
2 g {e}T[G]{e} dV. (7)

Considering the set of shape functions adopted, it can be seen that each of them is
characterized by its own strain distribution. If the strain vector related to the ith shape
function is denoted by {ē}i ; the total strain is found by superposition as

{e}= s
N

j=1

{ē}jpj . (8)
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When this representation is replaced in equation (7) the strain energy integral becomes

U= 1
2 s

N

i=1

s
N

j=1

pipj g {ē}T
i [G]{ē}j dV. (9)

It is seen that the stiffness coefficient kij may be written as

kij =g {ē}T
i [G]{ē}j dV. (10)

2.2. Transformation to physical co-ordinates
At this stage the method presented differs from the classical order reduction techniques

employed in Rayleigh–Ritz approaches. A transformation to physical co-ordinates is
adopted for every substructure. A convenient choice of physical co-ordinates must be done.
These can be either components of displacements or rotations at specified points of the
substructure. Physical co-ordinates of a structural component can be classified as internal
or constraint. Constraint co-ordinates are first chosen and then as many internal
coordinates to complete N (the order of approximation to the continuum is adopted). The
order of the system muct be large enough to include at least all constraint coordinates
required by the structural component. In general an increase of N results in a better
approximation to the continuum.

The transformation to physical co-ordinates is achieved by means of a (N×N) matrix
[F] whose columns are obtained by evaluating each of the physical coordinates resulting
from the displacement field of every shape function 8̄i (x, y, z). The co-ordinates in every
substructure transform as

{p}=[F]−1{x}. (11)

The stiffness and matrices transform as

[M]= [FT]−1[m][F]−1, [K]= [FT]−1[k][F]−1. (12, 13)

Figure 1. Mode 15 of complex beam structure.
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Figure 2. Portrait of resulting matrices of complex beam structure.

The dynamic resulting equation is

[M]{ẍ}+[K]{x}=0. (14)

2.3. Order reduction and assembling
The method presented starts with an invariable set of shape functions chosen a priori,

with all bounded conditions neglected at this stage. The stiffness and mass matrices can
then be determined in a systematic manner. Enforcement of geometric boundary
conditions, both internal and external and the corresponding order reduction is achieved
in a simple systematic manner by an assembling procedure similar to FEM. The ‘‘exact
identity method’’ described by Jen et al. [1] is achieved just by adopting the same shape
function in the matching boundaries for problems of spatial dimension 2 or 3.
2.3.1. Order reduction for a simple structure. For a mechanical system whose behavior is
described by a system of equations such as equation (14), order reduction results from
external constraints when some of the physical variables of {x} are set equal to zero. This
can be formalized as follows.

An array {x*} is obtained by suppressing from {x} all those variables constrained. If
{x} is of dimension N and q variables are reduced, {x*} results and is of dimension N− q.
This can be achieved by a Boolean matrix [D] of dimension (Nx(N− q)) such that

{x*}=[D]T{x} and {x}=[D]{x*}. (15)
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Matrix [D]T is obtained from the unitary matrix by removing those rows corresponding
to constrained variables. Substituting equation (15) in equation (14) and premultiplying
by [D]T, the resulting equation to be diagonalized is

[M*]{ẍ*}+[K*]{x*}=0, (16)

where

[M*]= [D]T[M][D], [K*]= [D]T[K][D]. (17, 18)

2.3.2. Assembling complex structures. The approximate models obtained for structural
components can be extended to complex structures built from such components subject

T 1

Frequency coefficients of a complex beam structure

Characteristic angular frequency/(EI/rAL4)1/2

ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Mode i RRM in physical co-ordinates theoretical solution

1 0·000000000 0
2 0·000000000 0
3 0·000000000 0
4 1·198960344 –
5 1·868306571 –
6 1·868306572 –
7 2·710979223 –
8 3·031195830 –
9 3·875174206 –

10 3·875174206 –
11 4·716672746 –
12 4·862330221 –
13 5·438447639 –
14 5·438447640 –
15 9·869604401 9·869604401
16 10·25281618 –
17 10·25281618 –
* * *

181 67·43119320 –
182 67·43119320 –
183 88·82643960 88·82643960
184 90·05431687 –
185 90·05431687 –
* * *

349 206·2385784 –
350 206·2385784 –
351 246·7403775 246·7401100
352 248·7844174 –
353 248·7844174 –
* * *

517 424·5432891 –
518 424·5432891 –
519 484·3049716 483·6106156
520 487·2800293 –
521 487·2800293 –

Total d.o.f. 987 a
E=Young’s modulus, I=area moment of inertia, r=mass density, A=cross-section
area, L=length of beam (all these values refer to border beams).
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Figure 3. A C–SS–C–SS steel plate with dimensions a=13 in, b=7 in, thickness h=0·045 in and
substructures indicated by dotted lines.

to internal constraints. The internal constraint is established in such a way that one or more
of the physical variables is common to two or more of the structural components. For
assembling complex structures, a Boolean matrix must be defined which establishes the
correspondence between the local variables of each component and the variables chosen
for the global structure [6]. This relation is expressed as

{x(i)}=[D(i)]{x}, (19)

where {x(i)} is an array with the local variables of each component. {x} is an array with
the variables of the global structure and [D(i)] is the assembling matrix corresponding to
the ith component. It should be noticed that these matrices are not only Boolean but sparse
and need not full storage. [M(i)] and [K(i)] are the mass and stiffness matrices corresponding
to the same component.

T 2

Characteristic frequencies of lateral vibrations of a C–SS–C–SS plate with
two cutouts

Characteristic frequency (Hz)
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Mode, i RRM in physical co-ordinates Jen’s Revised RRM

1 126·29 126·32
2 251·89 251·95
3 328·49 328·56
4 370·79 370·87
5 408·51 408·60
6 528·81 528·93
7 571·91 572·04
8 747·97 748·15
9 769·84 770·02

10 913·27 913·48
Total d.o.f. 327 327
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Figure 4. Mode shapes of the C–SS–C–SS steel plate (a) Mode 1; (b) Mode 2.

Replacing equation (19) in every substructure equation, premultiplying by [D(i)]T and
adding up through all structural components, the global equation for the whole structure
is obtained.

s
i

[D(i)]T[M(i)][D(i)]{ẍ}+ s
i

[D(i)]T[K(i)][D(i)]{x}=0. (20)

By solving the eigenvalue problem of equation (20), the natural frequencies and modes of
the whole structure are obtained. The mass and stiffness matrices for the whole structure
are sparse and sparse matrix techniques can be used for this purpose with the great benefit
of reducing computational costs[7–9].

By means of equation (19), the global modes in each structural component are obtained,
and equation (11) yields the corresponding co-ordinates in the original basis (shape
functions) and makes it possible to evaluate the modes in the whole continuum of the
structure. This transformation back to generalized co-ordinates is done with low
computational cost since the [F] matrix of each component is of lower order as compared
to the whole structure.

It must be emphasized that this method of order reduction is more efficient than singular
value decomposition from a numerical point of view due to the Boolean character and
sparsity of the matrices employed.

3.  

Two different systems to validate the proposed method and at the same time highlight
specific features of its application were chosen: a complex beam and a plate structure.

3.1. A complex beam structure
An Euler–Bernoulli beam model was developed by adopting Legendre polynomials as

base functions, instead of monomial base functions generally used. Legendre polynomials
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yield a diagonal component mass matrix and in some applications were found to be more
convenient than monomials. For a base of N shape functions, the physical variables were
chosen by dividing the beam length L in (N-1) equal spaces and adopting the normal
displacements of the resulting points except those closer to the ends that are replaced by
the angular displacements at both ends.

A complex frame of beams of equal length L such as shown in Figure 1 was adopted
as benchmark. Several natural vibration modes can be obtained from the exact solutions
of isolated beams from symmetry arguments. It should be noticed that the moment of
inertia and mass per unit length of the internal beams of the frame are twice as large as
for beams on the border. The maximum order of the Legendre polynomials adopted as
base functions for each beam is fourteen. Geometric boundary conditions were enforced
for displacements and rotations at both ends of the beams. Longitudinal vibrations were
not considered just for the purpose of bench-marking.

The sparse structure of the resulting matrices for the structure is shown in Figure 2. This
feature of the method is of great advantage for large structures since it benefits from very
efficient sparse matrix techniques. The numerical results are shown in Table 1. It can be
easily verified that all the approximate eigenvalues tend toward the exact theoretical values
from above. One of the resulting modes is shown in Figure 1.

3.2. A rectangular c–ss–c–ss plate with two cutouts
A rectangular steel plate with two cutouts hinged on two opposite sides and clamped

on the other two opposite boundaries as shown in Figure 3 is now considered. This case
was analyzed by Jen et al. [1]. The plate was synthesized by using thirteen identical square
plates. Legendre polynomials of order six in two space variables were used as shape
functions for each substructure. The results and performance comparisons are shown in
Table 2. In both analyses, the Young’s modulus, mass density and Poisson ratio are
considered to be E=30×106 lb/in2, r=0·283 lb/in3 and n=0·3, respectively. The first
two mode shapes are illustrated in Figure 4.

4. 

The method presented in this paper to handle the problem of free vibrations of an
undamped structure has proven to be very convenient for large structures and has the
potential to tackle larger systems than previous variations of the Rayleigh–Ritz method.
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